5 мозгодробительных задачек от советского математика

Попробуйте решить головоломки от популяризатора математики Бориса Кордемского, не пользуясь подсказками.




1. Переправа через реку

Небольшой воинский отряд подошёл к реке, через которую необходимо было переправиться. Мост сломан, а река глубока. Как быть? Вдруг офицер замечает у берега двух мальчиков в лодке. Но лодка так мала, что на ней может переправиться только один солдат или только двое мальчиков — не больше! Однако все солдаты переправились через реку именно на этой лодке. Каким образом?

2. Сколько деталей?

В токарном цехе завода вытачиваются детали из свинцовых заготовок. Из одной заготовки — деталь. Стружки, получившиеся при выделке шести деталей, можно переплавить и приготовить ещё одну заготовку. Сколько деталей можно сделать таким образом из тридцати шести свинцовых заготовок?

3. Во время прилива

Недалеко от берега стоит корабль со спущенной на воду верёвочной лестницей вдоль борта. У лестницы десять ступенек; расстояние между ступеньками 30 см. Самая нижняя ступенька касается поверхности воды.
Океан сегодня очень спокоен, но начинается прилив, который поднимает воду за каждый час на 15 см. Через какое время покроется водой третья ступенька верёвочной лесенки?

4. Девяносто девять

Сколько нужно поставить знаков «плюс» (+) между цифрами числа 987 654 321, чтобы в сумме получилось 99?

5. Для Цимлянского гидроузла

В выполнении срочного заказа по изготовлению измерительных приборов для Цимлянского гидроузла приняла участие бригада в составе опытного бригадира и девяти молодых рабочих.
В течение дня каждый из юных рабочих смонтировал по 15 приборов, а бригадир — на 9 приборов больше, чем в среднем каждый из десяти членов бригады. Сколько всего измерительных приборов было смонтировано бригадой за один рабочий день?

Ответы

1. Мальчики переехали реку. Один из них остался на берегу, а другой пригнал лодку к солдатам и вылез. В лодку сел солдат и переправился на другой берег. Мальчик, остававшийся там, пригнал обратно лодку к солдатам, взял своего товарища, отвёз на другой берег и снова доставил лодку обратно, после чего вылез, а в неё сел второй солдат и переправился.
Таким образом после каждых двух перегонов лодки через реку и обратно переправлялся один солдат. Так повторялось столько раз, сколько было человек в отряде.

2. При недостаточно внимательном отношении к условию задачи рассуждают так: тридцать шесть заготовок — это тридцать шесть деталей; так как стружки каждых шести заготовок дают ещё одну новую заготовку, то из стружек тридцати шести заготовок образуется шесть новых заготовок — это ещё шесть деталей; всего 36 + 6 = 42 детали.
Забывают при этом, что стружки, получившиеся от шести последних заготовок, тоже составят новую заготовку, то есть ещё одну деталь. Таким образом, всего деталей будет не 42, а 43.

3. Когда задача касается какого-либо физического явления, то непременно следует учитывать все его стороны, чтобы не попасть впросак. Так и здесь.
Никакие расчёты не приведут к истинному результату, если не принять во внимание, что вместе с водой поднимутся и корабль, и лестница, так что в действительности вода никогда не покроет третьей ступеньки.

4. Возможны два решения: 9 + 8 + 7 + 65 + 4 + 3 + 2 + 1 = 99 или 9 + 8 + 7 + 6 + 5 + 43 + 21 = 99.

5. Для решения задачи нужно знать количество приборов, смонтированных бригадиром. А для этого в свою очередь нужно знать, сколько приборов в среднем было смонтировано каждым из десяти членов бригады.
Распределив поровну между девятью молодыми рабочими 9 приборов, изготовленных добавочно бригадиром, мы узнаем, что в среднем каждый член бригады смонтировал 15 + 1 = 16 приборов. Отсюда следует, что бригадир изготовил 16 + 9 = 25 приборов, а вся бригада (15 × 9) + 25 = 160 приборов.
Источник
« 10 самых странных объектов, падавших с неба
5 способов уничтожить Землю в мгновение ока »
  • +16

Только зарегистрированные и авторизованные пользователи могут оставлять комментарии.

0
Для 4-й задачки еще вариант: 9+8+7+65+4+3+2+1=99
0
Якобы решение первой задачи — бред. В условии чётко и недвусмысленно сказано: переправиться могут «ТОЛЬКО ДВОЕ мальчиков»! Не один, не полтора — а только двое. В приведённом виде эта задача вообще не имеет решения; единственный вариант — пацаны форсируют реку вплавь…
-1
… только один солдат или только двое мальчиков — НЕ БОЛЬШЕ!