Как квантовая физика объясняет природу реальности?

Удивительная способность предков каждого из ныне живущих на планете людей к выживанию позволила нам с вами наслаждаться всеми благами и достижениями цивилизации. Но раз уж на то пошло и миллионы лет эволюции позволили нам познать самих себя и окружающий мир, то что за это время нам удалось узнать о Вселенной?
На самом деле не так уж много – по меркам той же Вселенной мгновение. И все же, все существующие на сегодняшний день физические теории описывают мир невероятно точно. Так, и классическая физика и квантовая механика по отдельности превосходно работают. Вот только все попытки объединить их в единую теорию по-прежнему не увенчались успехом, а значит наше понимание Вселенной и реальности нельзя назвать полноценным. В начале 1900-х годов рождение квантовой физики ясно показало, что свет состоит из крошечных неделимых единиц, или квантов – энергии, которую мы называем фотонами. Эксперимент Юнга, проведенный с одиночными фотонами или даже отдельными частицами материи, такими как электроны и нейтроны, представляет собой головоломку, поднимающую фундаментальные вопросы о самой природе реальности. Решить ее ученые не могут до сих пор.


Двухщелевой эксперимент

В современной квантовой форме эксперимент Юнга включает в себя излучение отдельных частиц света или материи через две щели или отверстия, вырезанные в непрозрачном барьере. По другую сторону барьера находится экран, который регистрирует прибытие частиц (скажем, фотопластинка в случае фотонов). Исходя из здравого смысла мы ожидаем, что фотоны пройдут через ту или иную щель и начнут накапливаться за каждой из них.
Но этого не происходит. Скорее, фотоны переходят в определенные части экрана и избегают других, создавая чередующиеся полосы света и тьмы, так называемые интерференционные полосы. Они возникают, когда два набора волн накладываются друг на друга. И все же, в любой момент времени через аппарат проходит только один фотон. Как будто каждый фотон проходит через обе щели одновременно и интерферирует сам с собой. Это не имеет классического смысла. Так в чем же дело?


Двухщелевой эксперимент демонструет, что свет и материя в целом могут проявлять характеристики как классических волн, так и частиц.

Картина несколько проясняется, если посмотреть на нее с математической точки зрения. То, что проходит через обе щели – это не физическая частица или физическая волна, а нечто, называемое волновой функцией – абстрактная математическая функция, которая представляет состояние фотона (в данном случае его положение). Волновая функция ведет себя как волна. Фотон попадает в обе щели, и новые волны исходят из каждой щели с другой стороны, распространяются и в конечном итоге мешают друг другу. Комбинированная волновая функция может быть использована для определения вероятностей того, где можно найти фотон.

Природа реальности

Немецкий физик-теоретик, один из создателей квантовой механики Вернер Гейзенберг интерпретировал математику так, что реальность не существует до тех пор, пока ее не наблюдают. «Идея объективного реального мира, мельчайшие части которого существуют объективно в том же смысле, в каком существуют камни или деревья, независимо от того, наблюдаем мы их или нет … это невозможно», – писал он.
Как пишет Scientific American, американский физик Джон Уилер также использовал вариант эксперимента с двумя щелями, чтобы доказать, что «ни одно элементарное квантовое явление не является явлением, пока оно не является зарегистрированным (то есть «наблюдаемым») явлением».


Принцип неопределенности Гейзенберга гласит, что соотношение неопределенности возникает между любыми квантовыми наблюдаемыми, определяемыми некоммутирующими операторами

Существуют и другие способы интерпретации эксперимента с двумя щелями. Так, лауреат Нобелевской премии по физике сэр Роджер Пенроуз предполагает, что чем больше масса объекта в суперпозиции, тем быстрее он коллапсирует в то или иное состояние из-за гравитационной нестабильности.
«Идея заключается в том, чтобы не просто поместить фотон в суперпозицию прохождения через две щели одновременно, но и поместить одну из щелей в суперпозицию нахождения в двух местах одновременно».

Лауреаты Нобелевской премии по физике 2020 года

Согласно Пенроузу, смещенная щель либо останется в суперпозиции, либо схлопнется, пока фотон находится в полете, что приведет к различным типам интерференционных картин. В общем и целом, эти эксперименты показывают, что мы пока не можем делать никаких заявлений о природе реальности.
« История в костюмах: реконструкция нарядов...
Бамбук: пожалуй, самая удивительная трава на... »
  • +11

Только зарегистрированные и авторизованные пользователи могут оставлять комментарии.

0
Как это бывает у современных физиков и их бездарных подпевал, относительно сложное явление, описывается так, что, даже желающий что-либо понять, может понять лишь то, что современные физики сами не могут объяснить внятно то, с чем столкунились, а с удовольствием заняли суперпозицию относительно логики.
+1
Автору. Алексей, почему не затронуть тему космической баллистики? Очень и очень интереснейшая тема, и более подходящая для осознания. Ведь там всё не так, как можно предположить находясь на Земле. Много удивительных фактов.